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Radiological reporting has generated large quantities of 
digital content within the electronic health record, which 
is potentially a valuable source of information for im-
proving clinical care and supporting research. Although 
radiology reports are stored for communication and 
documentation of diagnostic imaging, harnessing their 
potential requires efficient and automated information ex-
traction: they exist mainly as free-text clinical narrative, 
from which it is a major challenge to obtain structured 
data. Natural language processing (NLP) provides tech-
niques that aid the conversion of text into a structured 
representation, and thus enables computers to derive 
meaning from human (ie, natural language) input. Used 
on radiology reports, NLP techniques enable automatic 
identification and extraction of information. By exploring 
the various purposes for their use, this review examines 
how radiology benefits from NLP. A systematic literature 
search identified 67 relevant publications describing NLP 
methods that support practical applications in radiology. 
This review takes a close look at the individual studies in 
terms of tasks (ie, the extracted information), the NLP 
methodology and tools used, and their application pur-
pose and performance results. Additionally, limitations, 
future challenges, and requirements for advancing NLP in 
radiology will be discussed.
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normalization steps determine the 
lexical root of words (stemming), fix 
spelling mistakes, and expand abbre-
viations to their full form. Subsequent 
syntactic analysis determines the part 
of speech of words (eg, noun, verb, 
adjective), their grammatical struc-
ture (eg, noun phrase, verb phrase, 
prepositional phrase), or dependency 
relations (subject of or object of) (8). 
Semantic analysis assigns meaning 
to the words and phrases by linking 
them to semantic types (eg, symptom, 
disease, procedure) and concepts. A 
lexicon of words with definitions and 
synonyms may be used for this pur-
pose, for example, the Unified Med-
ical Language System metathesaurus 
(9) or RadLex® (10), a specialized 
radiologic lexicon. Semantic relations 
can be derived from ontologies, which 
are specialized lexicons containing 
concepts and relations between them. 
The negation detection step checks 
whether concepts or relations in the 
text are negated.

The combined result of all previ-
ous steps in the pipeline produces the 
NLP features. These features are sub-
sequently used to solve the system’s 
task, for instance, text classification 
or information extraction. To accom-
plish this, structured textual features 
can be processed by an automatically 
generated classifier (ie, machine-
learning approach) or be combined in 
rules hand-crafted by experts (ie, rule-
based approach). A hybrid approach 
that combines the machine-learning 
and rule-based approaches can also be 
used (eg, manually crafted rules are 
used to correct errors of an automatic 
classifier).

structured form, and therefore enable 
automatic identification and extraction 
of information. For example, such struc-
tured output can be the classification of 
patients in different groups or the codes 
from a clinical coding system. The terms 
text mining and information extraction 
are also commonly used to denote the 
task of NLP (4).

In an earlier review, Meystre et al 
(5) covered text mining of clinical narra-
tives in general. They discussed a wide 
range of NLP techniques and objectives 
for extracting information from clinical 
texts. Demner-Fushman et al (6) de-
scribed methods and systems for clini-
cal decision support and discussed the 
contribution that NLP can make. Stanfill 
et al (7) systematically reviewed auto-
mated clinical coding and classification 
systems. NLP techniques were not the 
primary focus of their review, and the 
authors limited their scope to systems 
with predefined classes as output. None 
of these reviews on the use of NLP in 
EHRs is both specific to radiology and 
systematic. The objective of this review 
is to provide a systematic, up-to-date 
overview of NLP applications in radiol-
ogy, focusing on the performance, bene-
fits, and current limitations.

Background

To identify and extract information 
from unstructured text, NLP applica-
tions rely on a sequence of steps that 
produces structured textual features 
from the radiology report. We consider 
a broad definition of NLP that includes 
techniques for both generation and 
subsequent processing of these fea-
tures (8). Common components of an 
NLP pipeline are illustrated in Figure 1,  
although depending on the application 
purpose only a subset may be used.

In a first preprocessing step, radi-
ology reports are split into their re-
spective sections. Successive process-
ing steps can use a subset of sections 
(eg, focus only on the reports’ impres-
sion) or assign specific weights to the 
content of different sections. The text 
is then further divided into sentences 
(sentence splitting) and words (tokeni-
zation). On the word level, additional 
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Essentials

nn Natural language processing 
(NLP) applications are key to 
obtaining structured information 
from radiology reports and have 
been developed for many dif-
ferent purposes.

nn Through automation, NLP appli-
cations can process large 
amounts of data and bring new 
functionality to clinical 
workflows.

nn Performance of NLP systems is 
generally high, but not many ap-
plications are actually being used 
in routine clinical practice or 
research.

nn Proliferation of NLP applications 
in radiology may improve by 
establishing performance re-
quirements, report standardiza-
tion, and external validation.

The rise of the electronic health 
record (EHR) is generating new 
challenges and opportunities in 

the medical domain, and the increasing 
use of digital content, both structured 
data and narrative text, is expected to 
offer many benefits. As well as the orig-
inal purpose of improving clinical care 
through high-quality documentation, 
EHR data can make more extensive 
contributions to research and clinical 
workflows (1). Harnessing the potential 
of clinical narrative in the EHR, includ-
ing radiologic reporting, will require 
strategies for efficient and automated 
information extraction.

As the formal product of a diag-
nostic imaging referral, the radiology 
report is used for communication and 
documentation purposes. There are 
various guidelines for effective report-
ing of diagnostic imaging (2,3), although 
essentially a report consists of free text, 
organized in a number of standard sec-
tions. Due to the unstructured, free-text 
nature of these reports, their conversion 
into a computer manageable represen-
tation is a major challenge. Techniques 
for doing so are provided by natu-
ral language processing (NLP), which 
can convert unstructured text into a 
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language processing,” “natural language 
understanding,” “medical language pro-
cessing,” “NLP,” “MLP,” “information 
extraction,” or “text mining,” in com-
bination with key terms that limit the 
results to the radiologic domain: “radi-
ology,” “radiologic,” or “radiological.” 
The MEDLINE query was expanded 
with the Medical Subject Headings in-
dex terms “radiology,” “radiology infor-
mation systems,” and “natural language 
processing.” We limited the search to 
articles in English. The exact query 
syntax is provided in the Appendix E1 
(online).

Study Inclusion and Data Extraction
All publications resulting from the 
search were independently assessed by 
two authors (E.P., medical doctor with 
6 months of experience in clinical ra-
diology; J.A.K., medical informatician 
with 15 years of experience in NLP). 
The main requirement for inclusion was 
the description and evaluation of an 
NLP method or tool yielding a practical 
application in radiology. Publications 
were excluded if no full text could be 
retrieved or if they were published in 
a journal without an assigned impact 
factor in the 2015 Journal Citation Re-
port science edition (13). Inclusion was 
based on title or abstract, although the 
full-text article was assessed when any 
of the inclusion criteria remained am-
biguous. Disagreements in the inclusion 
process were resolved by consensus 
discussion (E.P., J.A.K.). We hand-
searched citation lists of studies for 
publications not retrieved by our elec-
tronic search and included additional 
studies fulfilling all the criteria.

In a second stage, two authors 
(E.P., J.A.K.) independently assessed 
the full-text articles. For each included 
article, the following data were extract-
ed: (a) task of the NLP system (ie, what 
information is identified), (b) applica-
tion purpose or use case (ie, why the 
information is identified), (c) used NLP 
methodology and tools, (d) evaluation 
measures and performance results, (e) 
size of validation dataset and preva-
lence of identified outcome, and (f) op-
erational use (ie, whether the system 
was actually used after development).

cross-validation, where the reference 
set is split in a number of subsets. The 
algorithm is iteratively trained, leaving 
out a different subset for validation in 
each round. Therefore, all data are 
used for training, while the validation 
results are averaged over the multiple 
rounds of cross-validation.

Search Strategy
We conducted a search to identify all 
potentially relevant publications about 
NLP applications in radiology. The 
MEDLINE (11) and EMBASE (12) da-
tabases were queried for articles in-
dexed up to October 7, 2014. The 
search was performed by using the 
following free-text keywords: “natural 

NLP applications are generally 
trained and validated on a reference 
set, that is, a set of reports that were 
manually annotated by one or more ex-
perts in clinical radiology for the out-
come of interest. Often the annotated 
outcomes are binary (eg, whether the 
condition is present, the finding is ac-
tionable, or the report contains relevant 
recommendations), but sometimes the 
outcomes are spans of text (eg, relevant 
parts of sentences, specific concepts, or 
quantitative values). The reference set 
is often split into a training and valida-
tion set. The validation set is withheld 
during training and only used to assess 
the performance of the application. An-
other common approach is the use of 

Figure 1

Figure 1:  Natural language processing pipeline.
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in this category raise alerts for the oc-
currence of predetermined findings or 
conditions that have been reported but 
not acted on. Such alert systems add 
safeguards to clinical practice and po-
tentially reduce the chance of critical 
observations being overlooked by cli-
nicians. Conditions that have been tar-
geted include appendicitis (17), acute 
lung injury (19), pneumonia (27–30), 
thromboembolic diseases (33), or 
various potentially malignant lesions 
(20–22).

In an acute medical setting, surveil-
lance can be applied to minimize delay 
in communication between the radiol-
ogist and the referring clinician. Rink 
et al (17) recently developed a method 
using all individual statements from a 
report to identify appendicitis. They 
exploited a hybrid approach involving 
a customized lexicon, manually defined 
patterns and machine learning (sup-
port vector machine), and achieved a 
sensitivity of 91% and PPV of 83%. 
Lakhani et al (18) used a rule-based 
system, including various normaliza-
tion steps and negation detection, to 
detect a range of acute conditions from 
the impression section of a report. The 
system was tuned to each condition, 
for example, achieving 99% sensitivity 
and 89% PPV for appendicitis cases. 
Overall, sensitivity was 96% and PPV 
was 91%. Solti et al (19) experimented 
on chest x-ray reports to detect acute 
lung injury. They compared perfor-
mance of a rule-based system based 
on expert-derived keywords and a ma-
chine-learning algorithm (maximum 
entropy with variable-length charac-
ter combinations) and found machine 
learning to be superior (91% sensitiv-
ity, 90% PPV). The authors observed 
that the reports rarely mention acute 
lung injury explicitly and demonstrated 
that an NLP system can detect an im-
plicit diagnosis.

Diagnostic surveillance using NLP 
can support the management of cases 
that require follow-up by automatically 
generating alerts for subsequent exam-
inations or procedures. Zingmond et 
al (20) as early as 1993 tried to detect 
reports with actionable findings. A ma-
chine-learning classifier, exploiting key 

characteristic space (16). If sensitivity 
or specificity were not reported, we 
tried to compute them based on the 
available information (eg, a contingency 
table or by deriving specificity from a 
given sensitivity, PPV, and prevalence). 
If a study tested multiple methods for 
a particular application, we report the 
performance of the best performing 
method (and took averages for studies 
identifying multiple conditions).

The MEDLINE and EMBASE 
queries yielded 266 records after re-
moval of duplicates. Through eligibility 
screening, 67 studies were selected for 
detailed review. Figure 2 illustrates the 
inclusion process. The first included 
study was published in 1993, and the 
publication rate increased exponentially 
over time (Fig 3).

On the basis of the extracted ap-
plication purpose, we grouped the 67 
studies in five broad categories that 
represent different relevant purposes: 
diagnostic surveillance (n = 17), co-
hort building for epidemiologic studies 
(n = 18), query-based case retrieval (n 
= 7), quality assessment of radiologic 
practice (n = 15), and clinical support 
services (n = 10). We will discuss the 
studies by application category and are 
aware that studies in different cate-
gories may overlap in terms of meth-
odology and tools. Table 2 gives a sum-
mary of the NLP tools, lexicons, and 
other resources that were utilized in 
the included studies.

Diagnostic Surveillance
Seventeen studies described the auto-
mated detection of critical observations 
for surveillance (17–33). Applications 

The review was conducted accord-
ing to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses, 
or PRISMA, statement for systematic 
reviews (14). Risk of bias in individ-
ual studies was not assessed, because 
relevant quality indicators could not be 
identified.

Performance Measures
Performance measures that have been 
used in the studies in this review include 
sensitivity (also called recall in the field 
of NLP), specificity, positive predictive 
value (PPV) (also called precision), F 
score (harmonized average of recall and 
precision) (15), and accuracy. When de-
scribing the performance of a method, 
we focus on sensitivity and specificity; 
PPV is referred to if specificity is un-
available. Some studies provide the F 
score, which is frequently used in the 
field of NLP as a single, overall measure 
of system performance. Nomenclature 
and formulas are listed in Table 1. It 
should be noted that the performance 
measures pertain to the performance of 
the systems in identifying and extract-
ing relevant information from radiology 
reports and do not reflect the accuracy 
of the diagnostic reporting with respect 
to underlying pathologic conditions or 
clinical diagnosis.

Data Representation and Data Analysis
Due to the heterogeneity and multidis-
ciplinary nature of the included studies, 
a formal meta-analysis was not possi-
ble. We did, however, visually deter-
mine overall performance by repre-
senting the sensitivity and specificity of 
individual studies in receiver operating 

Table 1

Performance Measures

Measure Also Known As Formula*

Sensitivity Recall, true-positive rate TP/(TP + FN)
Specificity True-negative rate TN/(TN + FP)
PPV Precision TP/(TP + FP)
F score F measure, F1 score 2 × (Precision 3 Recall)/(Precision + 

Recall)
Accuracy Not applicable (TP + TN)/(TP + FP + TN + FN)

* TP = true-positive, FP = false-positive, FN = false-negative, TP = true-negative.
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report phrases and semantic analysis, 
scored 98% sensitivity and 88% spec-
ificity. Garla et al (21) developed a 
system to identify potentially malignant 
liver lesions to help ensure the timely 
and appropriate diagnostic workup of 
patients suspected of having cancer. 
Structured output generated by the NLP 
system cTAKES (clinical Text Analysis 
and Knowledge Extraction System) 
was processed with different machine-
learning techniques. The highest sensi-
tivity obtained was 98%, which is excel-
lent for surveillance purposes that have 
to limit the number of missed cases. 
The corresponding specificity was only 
24%; another machine-learning algo-
rithm yielded a more balanced result of 
94% sensitivity and 65% specificity.

The importance of temporal con-
text for surveillance was emphasized by 
Cheng et al (22), who showed the utility 
of NLP in tracking disease progression. 
They managed to determine if a tumor 
was stable or showed regression or pro-
gression, with a sensitivity of 81% and 
specificity of 92%.

Other surveillance applications aim 
to extract sentences with recommen-
dations for additional imaging from a 
report. This approach is less specific 
to monitored condition and imaging 
modality, because the radiologist’s lit-
eral advice is detected (eg, “follow-up 
CT is recommended in three months”), 
independent of observations. Extract-
ing such recommendations is not a 
classification task with true-negative 
results, thus specificity cannot be de-
termined and F scores are used as 
an overall performance measure. The 
performance of systems that extract 
recommendations ranged from 87% 
to 95% F score (23–26). Xu et al (26) 
also extracted the follow-up details 
(87% F score) and the recommended 
time intervals (98% F score). They 
used exact matching for evaluation (ie, 
a true-positive was only counted if the 
extracted span of text exactly matched 
the reference), whereas the other stud-
ies of this kind were limited to detect-
ing whether a sentence contained any 
recommendation.

In several studies surveillance act-
ed as a fail-safe for the detection of 

Figure 2

Figure 2:  Flow diagram of the literature review process. 

Figure 3

Figure 3:  Publication period of included studies.
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professional (71% sensitivity and 95% 
specificity) (28).

Studies in this application category 
are generally performed on retrospec-
tive data. Only one study evaluated a 
real-life surveillance system that was 
deployed during the 2002 Winter 

automated for the purpose of infection 
management (27,28). The rule-based 
system, processing features extracted 
by MedLEE (Medical Language Extrac-
tion and Encoding System), identified 
five out of seven neonates who had 
been flagged by an infection control 

incidental findings, that is, findings that 
are not indicated by the referring clini-
cian and therefore have a higher risk 
of remaining unattended (21,24,25,33).

In a more traditional biosurveillance 
application, the detection of hospital-
acquired pneumonia in neonates was 

Table 2

NLP Resources Used in Radiology

Resource* Description Web Site

BROK Java-based information extraction program that determines the BI-RADS  
final assessment categories

http://www.brighamandwomens.org/Research/labs/cebi/BROK/
default.aspx

cTAKES Open-source NLP system for information extraction from electronic  
medical record clinical free text

http://ctakes.apache.org/

DataScout (currently 
3M CodeRyte 
CodeAssist System) 

Commercially available product that codes radiology reports to  
facilitate billing and revenue management

http://solutions.3m.com/wps/portal/3M/en_US/Health-Information-
Systems/HIS/Products-and-Services/Computer-Assisted-Coding/

dtSearch Commercially available search engine and index generator http://www.dtsearch.com/PLF_Features_2.html
GATE Java suite of tools for NLP tasks, including an information extraction  

system (ANNIE)
https://gate.ac.uk/

I2E Commercially available text-mining software offering NLP-based  
querying of unstructured text sources

http://www.linguamatics.com/welcome/software/I2E.html

iSCOUT Toolkit that utilizes ontologies to retrieve radiology reports with specific  
findings

http://sourceforge.net/projects/iscout/

LEXIMER NLP engine that extracts, structures, and classifies unstructured radiology  
reports, licensed by Nuance Communications

http://www.nuance.com/index.htm

LifeCode Commercially available product that encodes clinical narrative reports  
for billing purposes

http://www.optum360.com/hospital/coding-documentation/ 
clinical-documentation-improvement.html

MALLET Java-based package for statistical NLP, document classification, clustering,  
topic modeling, information extraction, and other machine-learning  
applications to text

http://mallet.cs.umass.edu/

MedLEE NLP tool for medical domain that can extract, structure, and encode  
clinical information in textual patient reports

http://dx.doi.org/10.1136/jamia.1994.95236146

Metamap NLP tool that maps biomedical text to UMLS concepts http://metamap.nlm.nih.gov/
ONYX Open-source NLP system that integrates knowledge about syntax and  

semantics to interpret free text, can be trained on documents from a  
particular domain

http://aclweb.org/anthology/W09-1303

OpenNLP Machine-learning–based toolkit for the processing of natural language text https://opennlp.apache.org/
RadLex® Lexicon for standardized indexing and retrieval of radiology information  

resources
http://www.radlex.org/

Render Online searchable radiology study repository, allows for query-based  
retrieval of reports and images

Not publicly available

SAPHIRE An information retrieval system featuring concept matching, automatic  
indexing, probabilistic retrieval, and hierarchical relationships

http://dx.doi.org/10.1016/0010-4809(90)90031-7

SymText NLP tool for medical domain, integrating syntactic and semantic analysis http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2579100/
UIMA Component software architecture for the analysis of unstructured  

information
https://uima.apache.org/

UMLS metathesaurus Compendium of controlled vocabularies and classification systems in the  
biomedical sciences

http://www.nlm.nih.gov/research/umls/

YTEX Yale cTAKES extensions: clinical NLP, semantic similarity, data mining,  
feature engineering

https://code.google.com/p/ytex/

* BROK = BI-RADS Observation Kit, BI-RADS = Breast Imaging-Reporting and Data System, cTAKES = Apache clinical Text Analysis and Knowledge Extraction System, GATE = General Architecture for 
Text Engineering, LEXIMER = Lexicon Mediated Entropy Reduction, MedLEE = Medical Language Extraction and Encoding System, UMLS = Unified Medical Language System, UIMA = Unstructured 
Information Management applications.
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Danforth et al combined several 
ICD-9 codes with a Current Procedural 
Terminology, or CPT, code for a thorax 
CT scan within 30 days of the ICD-9 
diagnosis to identify patients with pul-
monary nodules (37). Although these 
ICD-9 codes are used to code other 
condition of the lung, they can also 
indicate the presence of one or more 
lung nodules. A rule-based method, us-
ing co-occurrence of positive and nega-
tive key words and mention of nodule 
dimensions, achieved 96% sensitivity 
and 86% specificity for the detection of 
pulmonary nodules as compared with 
review by a clinician.

Percha et al (38) used an automatic 
system to determine the BI-RADS as-
sessment categories from mammog-
raphy reports. The rule-based system 
used stemming, negation detection, 
and a dedicated lexicon that mapped 
BI-RADS terminologies to the respec-
tive composition classes. Its perfor-
mance was extremely high, with 99% 
of the cases correctly classified. This re-
sult may partly be explained by the con-
sistent use of standardized terminology 
in describing breast tissue composition, 
which has become common after the 
introduction of BI-RADS.

Studies in this application category 
automate the case identification step in 
cohort building. Esuli et al (39) showed 
that NLP can also assist in subsequent 
data collection (ie, chart review). A 
total of 500 breast imaging reports 
were manually annotated with specific 
phrases or clauses inside reports corre-
sponding to a variety of content, includ-
ing BI-RADS description, indication, 
follow-up advice, presence of enhance-
ments, surgery outcomes, and lymph 
nodes. A series of conditional random 
field, or CRF, classifiers obtained an F 
score of 86% for extracting the differ-
ent content types automatically.

Query-based Case Retrieval
Applications in this category retrieve 
cases with conditions or outcomes that 
are not predefined, but specified by the 
user in a query (52–58). These systems 
typically allow querying for a broad 
range of conditions or outcomes, which 
precludes the use of annotated training 

(while considerably reducing the man-
ual validation effort).

O’Connor et al identified renal cysts 
by NLP to assess the risk of developing 
renal cancer (34). An algorithm based 
on the open source text analysis tool 
GATE (General Architecture for Text 
Engineering) was used to screen a co-
hort of 15 695 patients who underwent 
abdominal computed tomography (CT) 
and automatically selected patients with 
findings positive for cysts with 95% sen-
sitivity and 96% specificity. The amount 
and type of cysts of the selected pa-
tients was manually determined from 
the reports.

Dublin et al used a technique that 
allows one to balance the tradeoff be-
tween manual review effort and accu-
racy of automatic detection (35). They 
used the ONYX NLP tool to distinguish 
between three groups of patients: 
those with pneumonia, those without 
pneumonia, and those with equivo-
cal diagnosis requiring manual review. 
When prioritizing the method for ac-
curacy, 25% of reports were marked 
for manual review, yielding a sensitiv-
ity of 92% and specificity of 87% for 
the patients who were automatically 
classified as having positive or negative 
findings; tailored to reduce manual re-
view to 12% of the reports, sensitivity 
decreased to 75% and specificity in-
creased to 95%. A lower sensitivity may 
be acceptable if resources are limited.

Hripcsak et al used MedLEE to de-
tect 24 different diseases and abnormal-
ities from a large database of 889 921 
chest radiographs (average sensitivity 
of 81% and specificity of 99%) (36). 
The predominant use of this database 
is clinical research, and the NLP results 
are used to screen patients for enroll-
ment in studies. The prevalence of the 
selected conditions ranged from 22% 
for pleural effusion to 0.04% for ten-
sion pneumothorax. When the pneu-
mothorax cases were compared with 
financial discharge coding, it was noted 
that only 17% of these cases were cor-
rectly associated with the appropriate 
International Classification of Diseases, 
version 9 (ICD-9) codes, indicating that 
ICD-9 codes alone are of limited value 
for case identification.

Olympic Games (29). The system mon-
itored various events of public-health 
interest by applying decision rules, us-
ing both NLP features from chest ra-
diographs and other structured EHR 
data. The system detected one pub-
lic-health event that exceeded a pre-
defined control limit. This study illus-
trates that automated systems not only 
have potential for managing individual 
patients, but can also monitor public-
health–related trends on a hospital 
or population level. A prerequisite of 
such applications is the integration of 
patient data across departments and 
institutes. Important barriers for such 
integration are related to the lack of 
a common data model and privacy 
issues. Large-scale collection of longi-
tudinal EHR data from heterogeneous 
sources may also advance prolifera-
tion of clinical decision support and 
personalized medicine, as discussed 
for instance by Jensen et al (1) and 
Demner-Fushman et al (6).

Cohort Building for Epidemiologic Studies
Traditionally, building cohorts for epi-
demiologic studies relies on a time-con-
suming and laborious manual selection 
of appropriate cases. By improving the 
efficiency of epidemiologic research, 
NLP techniques can contribute to ev-
idence-based radiology. Applications 
that automatically identify potential 
cases by NLP processing of the radio-
logic narrative were reported in 18 
studies (34–51). Automatic selection of 
patients has been studied for various 
conditions, including renal cysts (34), 
pneumonia (35), pulmonary nodules 
(37), pulmonary embolism (40), metas-
tases in general (41), adrenal nodules 
(42), abdominal aortic aneurysm (43), 
peripheral arterial disease (44), and 
liver conditions (45,46). Some studies 
identified patients with inserted lines 
or devices (47,48) or with specific BI-
RADS assessment categories (38).

Many applications in this category 
performed a broad screening for po-
tential cases, often followed by manual 
case validation and data collection. As 
a consequence, a high sensitivity (while 
maintaining a reasonable specificity) 
is desirable to find all potential cases 
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that classify the report as containing 
clinically important findings (97.5% 
sensitivity, 96.6% specificity) and rec-
ommendations for subsequent action 
(99.6% sensitivity, 98.2% specificity). 
Together this information allowed the 
correlation of diagnostic yield (the rate 
of clinically important findings at an im-
aging examination) with recommenda-
tion practice in radiology, leading to in-
sights into appropriateness of high-cost 
and high-volume radiologic procedures. 
Dang et al used LEXIMER to generate 
statistics on trends in recommenda-
tions for different types of imaging ex-
aminations (60,61). A database of over 
4 million radiology reports spanning 10 
years was investigated. Recommenda-
tions were correlated with indications, 
diseases, patient age groups, sex, sub-
specialties, referring physicians, and 
inpatient versus outpatient status. Sig-
nificant differences in recommendation 
rates were found, and the authors con-
cluded that such large-scale analysis is 
relevant to make more uniform recom-
mendations for imaging procedures.

Ip et al used a commercial NLP 
product to detect recommendations 
(87.9% sensitivity, 99.5% specificity) 
after observing pancreatic lesions at CT 
or magnetic resonance (MR) imaging 
(63). They found that radiologists with 
expertise in abdominal imaging were 
2.8 times less likely to recommend fur-
ther imaging than radiologists of other 
subspecialties. The authors remark 
that this finding is important, because 
unwarranted variation in radiologic 
practice compromises the quality of 
care. In another study, using General 
Architecture for Text Engineering, the 
authors achieved a higher sensitivity of 
94.5% and comparable specificity for 
recommendation detection (69). They 
showed that 82.2% of repeat imaging 
procedures are performed in the ab-
sence of a follow-up recommendation 
by a radiologist, suggesting that addi-
tional research on the occurrence of 
unwanted chains of diagnostic events is 
warranted.

Lacson et al used iSCOUT to auto-
matically select reports with pulmonary 
nodules. They correlated node manage-
ment with recommendations from the 

the retrieval of reports containing syn-
onymous terms from different lexicons. 
iSCOUT was subsequently used by 
Warden et al to evaluate the perfor-
mance of four different lexicons and 
terminologies (58): RadLex®, National 
Cancer Institute Thesaurus, Systemized 
Nomenclature of Medicine (SNOMED-
CT), and ICD-9. When the system was 
evaluated for retrieving reports with 
three different critical findings, none 
of the terminologies consistently per-
formed best. Moreover, the authors 
conclude that retrieval performance 
was not typically correlated with the 
number of synonyms in the terminology.

The performance of query-based 
retrieval systems is highly dependent 
on the quality and appropriateness of 
the used lexicon and may not be as 
high as can be obtained with systems 
specifically trained for specific condi-
tions. However, the advantage of the 
query-based systems is their ability to 
quickly retrieve cases for a broad range 
of purposes.

Quality Assessment of Radiologic Practice
This category covers applications that 
identify quality indicators of radiologic 
practice (59–73). These indicators 
can be used for internal quality assur-
ance, comparison to established guide-
lines, or fulfilling legal requirements. 
Automatic content analysis of large-
report databases can give insight in the 
daily routine and inner workings of the 
radiology department. NLP systems 
have been used to generate descriptive 
statistics on topics such as recommen-
dation behavior (59–63), report com-
pleteness (64–66), communication of 
critical results (67,68), and case man-
agement (69,70).

In a series of studies, the Depart-
ment of Radiology at Massachusetts 
General Hospital investigated NLP ap-
plications that determine recommenda-
tion behavior of radiologists (59–62). 
Dreyer et al developed LEXIMER (Lex-
icon Mediated Entropy Reduction), an 
NLP tool that analyzes grammar and 
terminology from individual sentences 
of a radiology report, resulting in a col-
lection of phrases (59). These phrases 
were used as features in decision trees 

examples for optimization. Instead, NLP 
is used to identify relevant concepts in 
radiology reports based on a specialized 
lexicon, often RadLex®, or customized 
lexicons. The indexing results are stored 
in a database, which can subsequently 
be queried by the user.

Gerstmair et al developed a Web-
based system to retrieve radiologic 
images linked to reports in a picture 
archiving and communication system 
(52). The reports were indexed by us-
ing RadLex®. Initial performance of the 
system in capturing important terms 
was moderate (42% sensitivity and 
68% PPV). After enrichment of the 
lexicon with 1500 terms that had not 
been captured, performance increased 
to 95% sensitivity and 93% PPV. These 
latter performance results are biased 
because the enrichment was based on 
the test data; they also suggest that 
there is much room for improvement of 
a specialized lexicon such as RadLex®.

Mamlin et al exploited LifeCode 
(A-Life Medical, San Diego, Calif) to 
index all findings within cancer-related 
chest x-ray reports (53). The commer-
cial system, originally designed for bill-
ing purposes, mapped all findings to 
a dedicated lexicon for chest imaging, 
achieving 85% sensitivity and 96% PPV 
against all manually identified findings.

Various applications were moti-
vated by image retrieval for educational 
purposes (52,55–57). For example, 
Do et al developed RADTF (RadLex®-
compatible Teaching File), an NLP 
system that indexes radiology reports 
for findings and diagnoses that are rel-
evant for teaching (55). The system 
was applied to more than 700 000 re-
ports linked to images, and provides a 
large repository of on-demand teaching 
material.

Several studies also emphasized the 
potential of query-based retrieval for re-
search purposes (52,54–56). For exam-
ple, Dang et al added a research mode 
to Render, their NLP-driven online 
searchable radiology repository (56). 
This mode allows exporting a range of 
administrative data and patient charac-
teristics of retrieved patients.

Lacson et al developed iSCOUT 
(54), a query application that enables 
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the bone involved was identified with 
an accuracy of 79%. The system was 
tested with a voice dictation workflow 
and provided real-time feedback to the 
radiologist in the form of a reminder 
or advice (based on clinical practice 
and musculoskeletal textbooks) specific 
to the identified fracture, for example, 
to consider a second fracture and fol-
low-up MR imaging. The authors re-
mark that automatic retrieval of infor-
mation can anticipate the need of the 
radiologist, allowing for a fluent incor-
poration into the workflow, in contrast 
to a search initiated by the radiologist 
using a text reference or Google. The 
linking of findings to anatomic locations 
is an example of relation mining. The 
same task was explored in two other 
studies that related anatomic locations 
to a set of predefined findings (sensitiv-
ity and PPV both 86%) (75), or to any 
finding (average sensitivity of 87%, PPV 
of 40%) (76).

Pneumonia detection has been a 
frequent use case for NLP-related re-
search. SymText, an NLP system that 
analyzes both syntax and semantics of 
free text, was used by Fizman et al to 
extract concepts related to infiltrates, 
aspiration, and pneumonia from reports 
(77,78). These concepts were intended 
as input for a program called the anti-
biotic assistant, which helps physicians 
to select appropriate antibiotics for in-
fectious diseases. The system scored 
84%–100% sensitivity and 90%–99% 
specificity for the individual concepts, 
outperforming the original keyword 
search from the antibiotic assistant, 
which achieved 56%–94% sensitivity 
and 88%–100% specificity. SymText 
also achieved 95% sensitivity and 85% 
specificity for the automatic detection 
of acute bacterial pneumonia based on 
the extracted concepts.

In another application of NLP, an 
error correction module on top of a 
speech recognition process was imple-
mented (79). Word co-occurrence sta-
tistics were used to predict the proba-
bility that a word occurs within a given 
context and to subsequently make 
corrections if necessary. Normally, in 
NLP the syntactic structure of language 
is used to extract meaning, now this 

increases. iSCOUT was used to detect 
mentions of pulmonary nodules in the 
observation and impression sections 
of CT scan reports (sensitivity 80%, 
PPV 96%). It appeared that 36% of 
the documented pulmonary nodules 
were not repeated in the impression 
section.

Duszak et al used DataScout (Cod-
eRyte, Bethesda, Md), a commercially 
available product, to verify the com-
pleteness of abdominal ultrasound re-
ports according to Current Procedural 
Terminology criteria (66), because de-
ficiencies in documentation can lead to 
lost revenue. From a billing database 
of reports of 37 practices, DataScout 
automatically detected the presence 
of report statements pertaining to the 
description of eight specific anatomic 
features. The authors noted that adher-
ence to structured reporting templates 
will improve reporting quality and miti-
gate lost revenue.

For acute findings it is desirable to 
ensure active delivery by using direct 
communication channels such as the 
telephone. An American College of Ra-
diology standard encourages the doc-
umentation of nonroutine communica-
tions in radiology reports (2). Lakhani 
et al combined their diagnostic surveil-
lance application for identifying critical 
results (18) with an algorithm for de-
tecting radiologist-to-referrer commu-
nications (98% sensitivity, 97% PPV). 
The developers applied their algorithm 
on 9.3 million reports and showed that 
over a period of 20 years, documen-
tation of critical communication in-
creased from 19% to 72% (67). This 
study shows the potential of NLP in dis-
covering trends in radiologic reporting 
over many years.

Clinical Support Services
Applications in this category are inte-
grated in the clinical workflow to pro-
vide assistance to radiologists at the 
time of reporting (74–83).

Do et al used NLP in an applica-
tion that extracts both the presence of 
fractures and their anatomic location 
(74). The rule-based algorithm cor-
rectly detected reported fractures with 
90% sensitivity and 95% specificity; 

Fleischner Society Guidelines (70). The 
management information was still man-
ually extracted from the report.

Researchers from Brigham and 
Women’s Hospital implemented a val-
idated prediction model as clinical 
decision support system (CDSS) into 
their Computerized Physician Order En-
try, or CPOE, for imaging procedures 
(71). The CDSS, which relies on man-
ual input from the referring clinician, 
advises on the need for CT pulmonary 
angiography. NLP was used to retro-
spectively evaluate the impact of the 
CDSS. Using General Architecture for 
Text Engineering, pulmonary embolisms 
were identified to assess the use and 
diagnostic yield of CT pulmonary angi-
ography. Over a period of 4 years, CT 
pulmonary angiography usage decreased 
by 20.1%, which corresponded with a 
69% increase in diagnostic yield.

A subgroup of studies in this cat-
egory exploited NLP to assess quality 
of content and format of the radiology 
report itself (64–68). Good radiologic 
practice is subject to conventions for 
standardized reporting. Official guide-
lines assist practitioners in providing 
appropriate radiologic care for patients, 
covering minimal format requirements 
as well (2,3). To limit interuser and in-
terinstitutional reporting variations, it 
is important to uphold report structure 
and completeness to these standards.

As an example of report quality 
assessment, Lakhani et al developed a 
system to automatically identify whether 
review of comparison images was prop-
erly documented (64). Guidelines of the 
American College of Radiology advise to 
clearly document the use of comparison 
imaging, which is considered to improve 
diagnostic accuracy. The rule-based 
system that was developed had an accu-
racy of 96%. Study results demonstrated 
that 26% of reports did not mention uti-
lization of comparison imaging, while 
the images were available.

Gershanik et al (65) observed that 
referring physicians often focus on the 
summary information in the impres-
sion section of a report. When action-
able or other relevant findings are not 
repeated in the impression section, the 
risk of disregarding critical information 
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Systems that are intended for integra-
tion into a clinical workflow (ie, those 
in the diagnostic surveillance or clinical 
support services categories) are sel-
dom reported to be in operational use 
(only one of the 27 systems that were 
considered). Systems that fall in the 
other application categories are much 
more prone to be operational (19 of 
40), but mostly in a single institution. 
Only six of these systems were applied 
to data from more than one institution 
(38,45–47,66,76).

Discussion

Our review shows that NLP in radiology 
is used for many different purposes. 
The largest application categories con-
tain systems that perform diagnostic 

slightly behind the other categories. 
This may be because the conditions de-
tected in this category are sometimes 
implicit and pertain to tasks of greater 
complexity.

Operational Use of NLP Systems

For each study we determined whether 
information was provided about the 
operational use of the described NLP 
system, that is, if the system was ac-
tually used after development. We 
distinguished between three levels: 
operational use was not discussed, op-
erational use was anticipated but not 
yet realized, and operational use was 
realized. Table 3 shows the number of 
systems for the different levels of op-
erational use per application category. 

process is reversed to predict what was 
probably meant.

Supervised structuring of radiology 
reports as part of routine clinical prac-
tice may produce high-quality struc-
tured data that can be used for intelli-
gent indexing, searching, and retrieval 
of radiology reports. Sinha et al (80) 
developed a system that produces a 
structured report in parallel to the tra-
ditionally formatted record. A graphic 
interface allowed for interactive editing 
of NLP output, resulting in a tabular list 
of finding and all the associated attrib-
utes. Clearly, human correction effort 
is dependent on the NLP performance; 
on a data set containing 477 findings, 
85% sensitivity and 90% PPV were ob-
tained, before manual adjustments.

Another service is the automatic 
mapping of radiology reports to a cod-
ing system for administrative, finan-
cial, and analytical purposes. Farkas 
et al (81) investigated the automatic 
assignment of ICD-9 codes to radi-
ology records, as part of a challenge 
that involved 45 different ICD-9 codes 
in 1954 records (84). The authors ob-
served that the challenge was domi-
nated by systems that use handcrafted 
classification rules, but question the 
scalability of this approach when thou-
sands of different ICD-9 codes need to 
be assigned. Their system combined 
automatically generated rules derived 
from the original ICD-9 coding guide-
lines with synonym enrichment by sta-
tistical analysis of labeled data. The 
system yielded a sensitivity of 90% and 
a PPV of 88% on the challenge test set.

Performance Summary

Figure 4 shows the performance of the 
NLP applications for which we were 
able to retrieve sensitivity and specific-
ity, while Figure 5 lists the study-specific 
sensitivity and specificity of the applica-
tions. Overall, the performance of ap-
plications is very high, with sensitivity 
and specificity of many systems above 
90%. There is no discernible trend in 
performance over time (Fig 5), nor is 
there a substantial difference in perfor-
mance between application categories, 
although diagnostic surveillance falls 

Figure 4

Figure 4:  Performance of natural language processing systems in different application categories in 
radiology. Points indicate the performance (sensitivity, specificity) of individual systems. The magnified area 
corresponds to the upper left quadrant of the receiver operating characteristic space.
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benefit of NLP applications is automa-
tion: They reduce–or even obviate–
manual review effort, enabling the as-
sessment of large amounts of data. As 
a result, tasks that previously were not 
contemplated become feasible. Second, 
NLP can bring new functionality to clin-
ical workflows by background monitor-
ing of reporting and advising the radiol-
ogist or referring clinician.

Applications vary in their imple-
mentation of the different possible 
NLP steps. All systems do tokeniza-
tion and most perform stemming. For 
many applications it is also impor-
tant to identify report sections, and 
nearly half of the systems include a 
segmentation step. Few systems per-
form syntactic analysis, possibly–as 
some studies illustrate–because little 
performance is gained (23,25,46). In 
contrast, systems often improve their 
performance by using features that 
derive from semantic analysis, which 
commonly employs a specialized lex-
icon to identify relevant terms and 
synonyms. Such lexicons are typically 
manually created by domain experts, 
but may also be combined with ex-
isting lexicons (33,38,43,47,52,74). 
Systems frequently implement nega-
tion detection, which is essential in 
a discipline where diagnostic imaging 
is often used to rule out a condition. 
While the simplest methods for pre-
dicting radiologic outcomes combine 
manually crafted decision rules with 
key terms and negation detection, ad-
vanced machine learning techniques 
can combine numerous semantic and 
syntactic features. Rule-based algo-
rithms and machine learning classifiers 
can achieve similar performance when 
tested on the same dataset (19,30). A 
few hybrid approaches were shown to 
improve on the performance of a ma-
chine-learning classifier by the addition 
of manually constructed rules that cap-
ture exceptions (17,25,46). Machine-
learning algorithms have become more 
popular in recent years, possibly be-
cause of their improved scalability and 
ease of use.

Although many NLP applications in 
radiology show excellent performance, 
overall 30% (20 of 67) of the systems 

same type of information, in particular 
whether a radiology report contains a 
specific radiologic outcome (ie, a con-
dition or individual finding). The major 

surveillance, identify cases for research 
studies, and assess the quality of radio-
logic practice. Although the applications 
differ, most systems aim to identify the 

Figure 5

Figure 5:  Study-specific sensitivity and specificity of natural language processing systems in radiology. 
∗Studies are ordered by year of publication, ∗∗performance for detection of findings, ∗∗∗performance for 
detection of recommendations.

Table 3

Levels of Operational Use of NLP Systems for Different Application Categories in 
Radiology

Application Category Level 1* Level 2 Level 3

Diagnostic surveillance 9 7 1
Cohort building for epidemiologic studies 9 2 7
Query-based case retrieval 4 0 3
Quality assessment of radiologic practice 5 1 9
Clinical support services 7 3 0
  Total 34 13 20

* Level 1 = system development and validation, operational use not discussed; level 2 = operational use discussed and 
anticipated but not yet realized; level 3 = system in operational use.
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Our review has a number of limi-
tations. First, the heterogeneity of the 
applications did not allow us to perform 
a meta-analysis of the studies. A second 
limitation is that the effect of individual 
NLP components on application per-
formance could often not be assessed 
because most studies did not provide 
this information. Also, there were only 
few studies that compared different 
NLP techniques, and thus it is difficult 
to draw general conclusions on the 
techniques that work best. Finally, our 
overview of the extent to which NLP 
applications are actually used in daily 
practice may be incomplete, as local ap-
plications may have been implemented 
after the study was done.

NLP has strong roots in radiology, 
whose reports are the most studied 
type of clinical narrative (5,7), and our 
review illustrates the variety of tasks 
that have been addressed. However, 
some more advanced tasks are scarcely 
studied and deserve further explora-
tion, such as the detection of disease 
progression using temporal reasoning, 
mining relations between anatomic lo-
cations and findings, administrative 
coding of radiology reports, and au-
tomating chart review in the cohort-
building process. We also see potential 
for interactive systems that aid the ra-
diologist at the time of reporting, for 
example, by suggesting differential di-
agnoses, interactive structuring or cod-
ing of reports, or linking observations 
in the report to guidelines and other 
literature.

In this review we have only consid-
ered applications of NLP in radiology, 
but NLP methods have been applied in 
many other fields of medicine (5–7). Ra-
diological applications may benefit from 
NLP applications that operate on EHR 
data from other fields. For instance, the 
NLP task of identifying a clinical diag-
nosis from broader EHR content can be 
helpful in providing a more definitive ref-
erence standard to diagnostic imaging.

In conclusion, NLP enables the au-
tomation of a diversity of tasks in radi-
ology. The performance of NLP applica-
tions in radiology is generally high, but 
not many systems have been reported 
as being actually used in routine clinical 

impossible to trace how the output was 
generated. In that respect, rule-based 
classifiers and decision trees are gen-
erally more easily to comprehend than 
statistical classifiers.

Another issue is that applications 
are often tuned to data from the insti-
tution in which they were developed. 
In the absence of external validation, it 
is unclear whether the results are gen-
eralizable. The need for system tuning 
is partly explained by a lack of stan-
dardization of radiologic reports. Some 
standards that promote more uniform 
reporting are available, for example, 
Integrating the Health care Enterprise 
(IHE) publishes various interoperability 
standards for radiology (85), including 
indication-specific reporting templates. 
One institution mentioned the use of 
standardized reports (23,25), although 
the templates used did not correspond 
to any official guideline. Improvement 
of and adherence to universally recog-
nized standards requires radiologists’ 
acceptance, while the endorsement of 
professional radiology organizations 
would also contribute considerably. For 
instance, The Radiological Society of 
North America has embraced the IHE 
standards for reporting templates in 
the Radiology Reporting Initiative (86), 
uniting experts in the field to create 
consistent report templates for all in-
dications based on the Management of 
Radiology Report Templates, or MMRT, 
format (87). The proliferation of NLP 
applications would ultimately benefit 
from adherence to these interoperabil-
ity standards, by making applications 
more generalizable and perform better.

Standardization of the terminol-
ogy that is used in radiologic reporting 
would also be beneficial. Controlled vo-
cabularies can guide the use of uniform 
language at the time of reporting and 
help NLP applications to extract rele-
vant features. However, existing lexi-
cons often do not have enough coverage 
(ie, miss concepts or synonyms). The 
improvement of lexicons and their in-
tegration in reporting software in an 
intuitive way can enhance the perfor-
mance and generalizability of NLP ap-
plications, as well as the overall quality 
of reporting (88).

are described to be in operational use, 
but there are large differences between 
application categories. In the diagnos-
tic surveillance and clinical support 
services categories, only one of 20 ap-
plications has been implemented and 
validated in a clinical workflow. On the 
other hand, in the quality assessment 
category, the majority of NLP appli-
cations were put to the test on large 
radiology databases (60–62,66,68,69). 
Rather than focusing on design and 
performance of the system, these stud-
ies aim to derive practical conclusions 
from application output.

There may be several reasons why 
many NLP applications in radiology re-
main in a proof-of-concept stage. First, 
uncertainty about minimal performance 
requirements may hamper system im-
plementation, especially when a task is 
fully automated. Evidence-based prac-
tice insists on justification not only of 
therapeutic and diagnostic procedures, 
but also of computerized support of the 
workflow. However, there is no guid-
ance on minimal performance require-
ments of computer systems. Such re-
quirements should be related to human 
performance on the task of interest, for 
example, in the form of interobserver 
agreement scores. Unfortunately, in-
terobserver agreement for most tasks 
is unknown. Studies should therefore 
not only evaluate system performance 
on a validation set, but also measure 
and report interobserver agreement 
on the same set. Performance require-
ments should also be task-specific: 
Applications that influence the clinical 
workflow cannot afford many errors, 
while less stringent criteria may be ap-
plicable to quality assessment applica-
tions. Errors may also be less costly if 
the system requires user validation, for 
example, when the output is a sugges-
tion or recommendation that is at the 
physician’s’ or researchers’ discretion 
to accept.

The lack of implementation of NLP 
systems in routine clinical practice and 
research may also be attributed to is-
sues that are not performance related. 
Clinicians and researchers may be re-
luctant to accept output from automatic 
algorithms because it is difficult or 
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care or research. Establishment of mini-
mal performance requirements, further 
standardization of reporting format and 
terminology, and external validation is 
likely to increase proliferation of NLP 
applications in this field.
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